Measuring Open Bottom Production with Fast MAPS Detector at sPHENIX

Xin Dong

Lawrence Berkeley National Laboratory

- Heavy flavor physics in HIC
- STAR Heavy Flavor Tracker
- Open bottom production
 - estimation for sPHENIX performance
- To-do and Summary

Uniqueness of Heavy Quarks in QCD

Zhu et al., PLB 647(2007)366

When $M_{HQ} >> T$, $M_{HQ} >> gT$

"Brownian" motion
$$\frac{\mathrm{d}p^i}{\mathrm{d}t} = -\eta_D p^i + \xi^i(t)$$

drag fluctuations

Diffusion coefficient D_{HQ}

HQ: Sensitive to Medium Transport Parameter

Moore & Teaney, PRC 71 (2005) 064904

Heavy Quarks to Study sQGP Properties

- A) To establish a consistent framework
 - to describe the strongly coupled medium and interactions
- B) To measure intrinsic transport properties of sQGP medium: D_{HQ} , η/s etc.

Other Ingredients: p+p reference - pQCD, Cold Nuclear Matter (CNM) effects ...

Buzzatti et al., PRL 108 (2012) 022301

arXiv: 1502.02730, 1506.03981

Experimental Challenges

Abundance	c τ (μ m)
56%	123
24%	312
10%	150
10%	60
40%	491
40%	455
10%	453
10%	435
	56% 24% 10% 10% 40% 40% 10%

Precision vertex detector to reduce combinatorial background is critical for precise measurement

STAR Heavy Flavor Tracker

STAR HFT/PXL – first application of MAPS pixel detector at a collider

- Aim for precision measurements of charmed hadron production in HIC
- PXL detector designed, developed and constructed (including mechanics) at LBNL
- First layer thickness: 0.4%X₀ critical for ultimate pointing resolution in wide p
- Pitch size 20.7x20.7μm
- Integration time: 186 μs (see next page)

Hit Density on STAR PXL at RHIC Environment

Simulation@50kHz

		PXL inner	PXL outer
	Radius (cm)	2.8	8
)	MB pileup hits (cm ⁻²)	13	~3
	UPC electrons (cm ⁻²)	33	~3
	Total bkgd hits (cm ⁻²)	46	~6
	MB signal Au+Au (cm ⁻²)	~8	~1
	Au+Au MB real data (cm ⁻²)	~50	~5

Signal hits fraction in MB (Central) events: ~15% (~30%) at PXL inner

Increasing fake matches in low p_T

Technology chosen considering both physics and technology readiness

D-meson v₂ at RHIC

70% of 2014 Au+Au 200 GeV Data

Significant charm hadron v_2 at $p_T>2$ GeV/c v_2/n_q vs. $(m_T-m_0)/n_q$: D-meson comparable to Ks, ϕ , Ω

- may be slightly lower: centrality bias

- (D ~ N_{bin} scaling, light hadrons ~ N_{part} scaling)

D⁰ R_{AA} and v₂ Compared to Models

D-meson v₂ data favor charm quark diffusion / flow in the medium

Models with **charm flow** + **coalescence** describe both R_{AA} and v₂ data of D-mesons

Heavy Quark Spacial Diffusion Coefficient

Data favors $2\pi T D_s \sim 2-12$ (temperature dependence)

- Consistent with lattice QCD calculations

Bottom Suppression in Heavy Ion Collisions

CMS-PAS-HIN-12-014, ALICE JHEP 11(2015) 205

PHENIX PRC 93 (2016) 034904

Suppression hierarchy between $R_{AA}(J/\psi^B)$ and $R_{AA}(D)$ at LHC Hint of hierarchy between $R_{AA}(e^B)$ and $R_{AA}(e^D)$ at RHIC – consistent with pQCD calculations

Open Bottom Production

Open bottom production over a wide range of momentum

Flavor dependence of parton energy loss

Cleanest probe to quantify medium transport properties – e.g. D_{HQ}

Total bottom yield for precision interpretation of Upsilon suppression

- low p_T coverage is critical

Buzzatti et al., PRL 108 (2012) 022301

Is charm heavy enough?
Sizable correction to the Langevin approach for charm
- may limit the precision in determining **D**_{HQ}

p (GeV)

p (GeV)

Uniqueness at RHIC

Uniqueness at RHIC

- dominated by pair creation, clean interpretation for experimental results

Pair Creation

Flavor Excitation

Gluon Splitting

T. Sjostrand, EPJC17 (2000) 137

Requirements for Precision Open Bottom Production at RHIC

- High luminosity runs and large datasets (triggered and untriggered) B->J/ ψ , B->D, B->e, B->D π and b-jet etc.
- Fast silicon detector with ultimate pointing resolution Next generation MAPS sensors with much shorter integration time < 20 μ s (vs. 186 μ s) high efficiency at high RHIC luminosity, particularly at low p_T

Technology – ALICE MAPS for ITS-upgrade

ALPIDE full-scale prototype ver.3 (Oct 2015)

Main parameters

- Dimensions: 30mm x 15 mm
- Pixel pitch: 29μm x 27μm
- Power consumption <100mW/cm²
- Material thickness: 0.3X₀ (inner), 1X₀ (outer)
- Integration time: < 20 μs
- Total area 10 m² (PXL was 0.16 m²)

LBNL RNC group is the project leader for the ALICE-USA ITS upgrade construction project.

- Assembly and testing of Middle layer staves (layers 3,4)
- RDO system design (collaboration) and fabrication of RDO for the middle layers.
- Design of the powering system for all outer layers (3-6)
- Sensor and component testing at the BASE facility for SEU and SEL.
- Outer layers carbon fiber support cylinder and services cone structures.

Physics Channels

Hadron	Abundance	c τ (μ m)		
D^0	56%	123		
D ⁺	24%	312		
D_s	10%	150		
Λ_{c}	10%	60		
B ⁺	40%	491		
B ⁰	40%	455		
B_s	10%	453		
Λ_{b}	10%	435		

$$B \rightarrow J/\psi + X$$
 1.2%
 $B \rightarrow \overline{D}^0 + X$ 60%
 $B \rightarrow e + X$ 11%
 $B^+ \rightarrow \overline{D}^0 \pi^+$ 0.5%
Needed for p_T<10 GeV

b-tagged jet - see Jin's talk

Tracking Performance Input for Quick Estimation

Input distributions coming from sPHENIX full GEANT simulation performance for single track with TPC+INTT+MAPS

T. Frawley, sPHENIX tracking review, Sept. 2016

A few assumptions - to be verified / fine-tuned with full GEANT simulation

- Low p_T efficiency drop due to fake matches
- Same/comparable resolution in DCA_z dimension, and the correlation between DCA_xy and DCA_z taken from STAR HFT
- The broader DCA structure (due to fake matches) taken from STAR TPC+HFT (conservative)

A Bit Detail on the Simulation Estimation

- A fast simulation approach (package used for HFT efficiency calculation too)
- tracking efficiency characterized by a matching ratio between silicon detectors and the TPC
- full DCA distributions represent the tracking performance (including good and mismatches) 2D (DCA_xy vs. DCA_z)

Goal: to capture full distributions for both signals and combinatorial backgrounds - reasonably good for low p_T estimation

Examples for STAR HFT

Validation with Full GEANT Simulation

- Hijing+D⁰ sample through GEANT + reconstruction
- Fast simu inputs taken from Hijing single track performance
- Then compare the efficiencies between fast simu vs. that from Hijing+GEANT directly

Estimation for Non-prompt D⁰ at sPHENIX

D⁰ significance in 1B 0-10% Au+Au events

D^o cross section – fit to STAR measurement Bottom cross section – FONLL*N_{bin}

Good performance for measuring non-prompt D^0 at low p_T with sPHENIX

PID detector (TOF) can help further improve the low p_T precision - constrain the total bbbar X-sec

Particle Identification with TOF

10cm gap between TPC and EMCAL - TOF

TOF PID requirement:

$$M = p\sqrt{\left(\frac{ct}{L}\right)^2 - 1}$$

$$\frac{\Delta M}{M} = \frac{\Delta p}{p} \oplus \gamma^2 \left[\frac{\Delta L}{L} \oplus \frac{\Delta t}{t}\right] \sim \gamma^2 \frac{\Delta t}{t}$$

STAR TOF: Radius ~ 2.15 m, σ_t ~ 65 ps

sPHENIX TOF (to have the same PID capability) Radius ~ 0.85 m, $\sigma_{\rm t}$ ~ 25 ps

Candidate: Many-gap MRPC

Physics Simulation To-Do List towards Proposal

- Realistic estimation on the pileup MB/UPC hit density at MAPS sensors.
- Full GEANT simulation to obtain the complete input distributions for data-driven fast simu.
- Estimation of uncertainties on R_{AA}/R_{cp} etc.
 - Vertex resolution/efficiency effect in low multiplicity Au+Au and p+p collisions
- Decay channels B->D, B->J/ψ, B->e and B->Dπ etc.

Other HF measurements, e.g. Λ_c , HQ correlations etc.

$\Lambda_{\rm c}$ and HQ Correlations

<u>High statistics Λ_c measurements</u>

 Λ_c/D^0 enhancement sensitive to - charm quark hadronization, thermalization, domains in sQGP etc.

Heavy quark correlations

- More sensitivity to HQ-medium interaction, thus better determination of ΔE mechanisms and D_{HQ}
- LHC vs. RHIC different initial pair correlation/medium dynamics

Lee et al, PRL 100 (2008) 222301 Ghosh et al, PRD 90 (2014) 054018

Zhu et al, PRL 100 (2008) 152301

Summary

- Heavy-flavor phase-I program at RHIC (2014-2016)
 - Precision charmed hadron measurements from STAR-HFT/PHENIX-(F)VTX
- Heavy-flavor phase-II program at RHIC (2021+)
 - Open bottom / correlation measurements
 - Complementary to the HF program at LHC
- Fast MAPS silicon detector is necessary and will deliver the physics

Buzzatti et al., PRL 108 (2012) 022301

arXiv: 1502.02730, 1506.03981

Fast MAPS Detectors at RHIC - STAR HFT+

STAR HFT+ upgrade / sPHENIX pixel detector:

- Faster (<20μs) MAPS sensors benefiting from ALICE ITS upgrade
- Aim for precision bottom measurements in 2021+ at RHIC Complementary to LHC heavy flavor program

Pixel Detector Performance

Significant improvement in S/B in D-meson reconstruction

D-meson R_{AA} and v_2 : RHIC vs. LHC

Comparable suppression at high p_T

- collisional and radiative ΔE

Possibly different physics at low p_T

- Initial parton distributions x_T at 2 GeV/c ~ 10^{-2} (RHIC) ~ 10^{-3} (LHC)
- "Cronin" effect
- Charm quark flow

Precision charm v_2 data, particularly to low-intermediate p_T are critical for the extraction of sQGP D_{HO} .

D_s – Hadronization and Strangeness Enhancement

Strangeness enhancement in QGP + coalescence -> D_s/D^0 enhancement in HI collisions Hint of D_s/D^0 enhancement in data from RHIC and LHC -> need more precise measurements

Λ_c - Charm Baryon Enhancement?

Various models predict different levels of enhancement for Λ_c/D^0 depending on - hadronization, thermalization, domains in sQGP

No measurement of Λ_c in A+A collisions (c τ ~ 60 μ m, Λ_c^+ -> pK $^-\pi^+$, B.R. 5%)

Prospective with the STAR HFT data at RHIC

Λ_c/D⁰: Lee et al., PRL100 (2008) 222301; Ghosh et al., arXiv:1407.5069

Near-Term: STAR HFT Physics Goals

Centrality dependence of charm hadron v_2 First Λ_c measurement in HI collisions - coalescence hadronization B->J/ ψ with displaced vertex at RHIC - bottom quark energy loss

Does Charm Flow?

TAMU model: non-perturbative transport + Langevin simulation

- "bump" structure in R_{AA} at low->intermediate p_T
 - coalescence of flowing charm + light quarks
- D-meson v₂ data favor charm quark diffusion / flow in the medium

Measuring Bottom

Lower production rate! Lower branching ratios for exclusive reconstruction!

Bottom Suppression in Heavy Ion Collisions

ALICE JHEP 09 (2012) 112, CMS-PAS-HIN-12-014, ALICE arXiv: 1506.06604

 R_{AA} of b-jets at p_T>80 GeV/c comparable to that of light jets caveat: sizable gluon splitting contribution Suppression hierarchy between $R_{AA}(J/\psi^B)$ and $R_{AA}(D)$ at LHC – consistent with pQCD calculations

Current Bottom Measurements

25.8 pb⁻¹ (5.02 TeV pp) + 350.68 μb⁻¹ (5.02 TeV PbPb) 1.4 Preliminary D⁰ |y| < 2.4 D⁰ |y| < 1.0 T_{AA} and lumi. uncertainty Centrality 0-100% 102 D_T (GeV/c)

LHC

Measuring Bottom at RHIC

Separation of c and b contribution to electrons / non-prompt J/ ψ using impact parameter method with VTX and FVTX at PHENIX

PHENIX, PRC 93 (2006) 034904

Statistics are challenging, hint of less suppression for bottom quark

→ High statistics measurement in future heavy flavor program at RHIC

Key Instruments – Pixel Silicon Detector

	ATLAS	CMS	ALICE	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (μm²)	50x400	100x150	50x425	50x425	20x20
Radius of first layer (cm)	5.1	4.4	3.9	2.5	2.8
Thickness of first layer	~1%X ₀	~1%X ₀	1%X ₀	1%X ₀	0.4%X ₀

Monolithic Active Pixel Sensors (MAPS)

MAPS pixel cross-section (not to scale)

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 µm) → MIP signal is limited to <1000 electrons</p>
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel	CCD
Granularity	+		+
Small material budget	+		+
Readout speed	+	++	
Radiation tolerance	+	++	

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

Physics Channels

Hadron	Abundance	c τ (μ m)
D^0	56%	123
D ⁺	24%	312
D_s	10%	150
Λ_{c}	10%	60
B ⁺	40%	491
B^0	40%	455
B_s	10%	453
Λ_{b}	10%	435

$$B \rightarrow J/\psi + X$$
 1.2%
 $B \rightarrow \overline{D}^0 + X$ 60%
 $B \rightarrow e + X$ 11%
 $B^+ \rightarrow \overline{D}^0 \pi^+$ 0.5%
Needed for p_T<10 GeV

Theory curves on B/D-mesons from TAMU/DUKE/CUJET

b-tagged jet

Estimation for Non-prompt D⁰ Measurements

Full signal and background simulation based on data-driven simulation package - validated with full GEANT simulation for the TPC+HFT tracking at STAR

Simu. for STAR HFT

D⁰ significance in 1B 0-10% Au+Au events

D⁰ cross section - STAR measurement Bottom cross section - FONLL*N_{bin}

A Bit Detail on the Simulation

- Full GEANT simulation often limited by the background statistics
- Alternative approach: Data-driven fast simulation
- tracking efficiency characterized by a matching ratio between silicon detectors and the TPC
- full DCA distributions represent the tracking performance (including good and mismatches) 2D (DCA_xy vs. DCA_z)

Goal: to capture full distributions (after topological cuts) for both signals and backgrounds

Examples for STAR HFT

Validation with Full GEANT Simulation

- Hijing+D⁰ sample through GEANT + reconstruction
- Data-driven fast simu inputs taken from Hijing single track performance
- Then compare the efficiencies between fast simu vs. that from Hijing+GEANT directly

Tracking Performance Input for This Simulation

Input distributions coming from sPHENIX full GEANT simulation performance for single track with TPC+INTT+MAPS

T. Frawley, sPHENIX tracking review, Sept. 2016

A few assumptions - to be verified / fine-tuned with full GEANT simulation

- Low p_T efficiency drop due to fake matches
- Same/comparable resolution in DCA_z dimension, and the correlation between DCA_xy and DCA_z taken from STAR HFT
- The broader DCA structure (due to fake matches) taken from STAR TPC+HFT (conservative)